Что такое веб-сервер. Как работает веб-сервер В чем принцип работы сервера

Для чего нужен сервер и когда стоит покупать его для своего бизнеса?

Для начала уточним, что сервер – это оборудование, которое использует серверное программное обеспечение . Он оптимизирован для работы с другими компьютерами (клиентами). Клиентами сервера могут быть компьютеры, телефоны, факсы, принтеры и все другие устройства, которые подключаются к интернету. Чем больше информации Вы планируете хранить на серверном оборудовании, тем мощнее должен быть сервер. Для каких целей арендуют сервер? Подробнее в материале на блоге ГиперХост .

Компании используют сервера для общего доступа всех сотрудников к определенной информации и для общего пользования доступными ресурсами. Для того, чтобы сервер хорошо работал, нанимают системного администратора. Он настраивает оборудования для работы, делает резервное копирования, устраняет возникшие неполадки. Корректная работа сервера напрямую зависит от качественной и профессиональной работы сис.админа . Обратите внимание, что для всех пользователей услуг компании предоставляется бесплатная техническая поддержка, вне зависимости от тарифа.

Но все же многие считают, что иметь собственный сервер не обязательно, можно воспользоваться обычным компьютером. Но хотим вас предупредить, что это очень недальновидное решение. Компьютер не сможет выполнять множество задач, которые выполняет сервер. Прежде всего, сервер это не только хранение информации, но и выполнение большого количества одновременных запросов, с которыми обычный ПК не справится и в критический момент просто потеряет всю необходимую информацию.

Если Ваш бизнес работает на перспективное будущее, следует задуматься о выборе сервера.

Для начала разберемся, какие есть виды серверов в зависимости от выполняемых функций.

Почтовый сервер принимает непосредственное участие в принятии и отправлении электронной почты. Вы отправляете письмо на электронный адрес, но оно сначала попадает на почтовый сервер, где происходит его обработка. Индексируется адрес получателя и письмо отправляется. В этом процессе участвует несколько почтовых серверов, которые обмениваются необходимой информацией. О популярных почтовых серверах Exim, Postfix, Sendmail можно прочитать в статье.

Файловый сервер хранит все файлы сети, к которым происходит доступ с других компьютеров. Для обмена файлами используется протокол FTP, с помощью которого пользователь может загружать все файлы в сети (картинки, видео, аудио). Файловым сервером можно считать любой компьютер, который имеет много дискового пространства для хранения информации.

Веб-сервер – сервер подключенный к Интернету и принимающий запросы пользователей по протоколу HTTP. Все сайты, который есть в сети, расположены на веб-серверах. Такой вид сервера – непосредственный проводник между сайтом и клиентами. Веб-сервер получает запрос, далее обрабатывает его и выдает результат (файловый или гипертекстовый). По своей сути веб-хостинг и веб-сервер понятия идентичны. Веб сервер Nginx и apache – что это и как работает данная связка? Ответ на данный вопрос .

Сервера баз данных. В большинстве все программы используют базы данных. Данный вид серверов обеспечивают доступ к данным с помощью системы клиент-сервер. Самыми популярными серверами баз данных являются SQL SERVER (Microsoft), SQL BASE SERVER, Oracle SERVER (Oracle Corporation), IBM DB2, Informix. Они работают на платформе различных ОС, таких как MSDOS, OS/2, Xenix, Unix.

Прокси-сервер – можно сказать, что это тот же веб-сервер, но он осуществляет запросы в сети вместо посетителя. Это по сути комплекс программ. Вы подключаетесь к прокси-серверу, даете ему запрос, а он ищет информацию вместо Вас, в некоторых случаях изменяя ее. Работа с прокси-сервером позволяет защитить компьютер клиента от вредоносных программ, быть анонимным в сети, ограничить доступ к определенным ресурсам или наоборот обойти запреты. Простая установка прокси сервера на свой VPS за 1 минуту, подробнее .

Игровой сервер обеспечивает связь между клиентами в сети. Клиенты взаимодействуют в игре и общаются между собой. Данный сервер получает информацию, обрабатывает запросы, обновляет систему и рассылает результаты всем участникам игры. В основном, игровые сервера размещают у себя хостинг-компании.

В наше время очень трудно представить работу предприятия без использования серверов. В этом трудоемком процессе участвуют сервера всех типов.

Причины, по которым можно определить, нужно ли для вашей фирмы?

  • Вы желаете систематизировать и централизовать всю информацию, которая находится в вашей компании.
  • Многим сотрудникам необходимо подключаться к сети, независимо от места их нахождения.
  • Вам необходимо много места для хранения информации.
  • Вы планируете запустить программное обеспечение, которое поможет развитию вашего бизнеса.
  • Ваша компания развивается и растет, количество сотрудников постоянно увеличивается.
  • Ваш бизнес не очень большой, но Вы хотите выглядеть как настоящий профессионал.

От правильности выбора сервера зависит успешная работа компании, ведь сервера помогают организовать бесперебойное функционирование предприятия, и связывают отдельные подразделения, например, те, которые находятся в разных городах.

Специалисты компании HyperHost с удовольствием подберут наиболее оптимальный физический или , по всем параметрам, сервер и обеспечат стабильность Ваших проектов. Сравнение также поможет сделать вам верный выбор и правильно подобрать услугу в зависимости от поставленной цели.

Необходимо выбрать операционную систему для работы сервера? Данная поможет вам сделать правильный выбор и оценить все возможности каждой ОС. О панелях управления для серверов с Linux .

42787 раз(а) 17 Сегодня просмотрено раз(а)

Если ежедневно используется компьютер, который подключен к сети, если на мобильном гаджете тоже подключен Интернет, то каждый пользователь время от времени сталкивается со словом – «сервер». Причем это слово может встречаться в разных сочетаниях, и не каждый пользователь понимает, о чем идет речь. Что же скрывается до словом «сервер», да и зачем он пользователям нужен?

Под понятием «сервер» может скрываться аппаратное устройство и программное обеспечение для него (аппаратный и виртуальный). Аппаратный сервер – это отдельный компьютер. Он нужен для обеспечения работы других ПК и офисной техники. Виртуальный сервер – это ПО. При этом конкретный сервер объединяет эти два вида.

Прежде следует помнить, что в его задачи входит обслуживание сети и пользователей, а не управление сетью. Пользователи сами ставят задачи серверу, а он быстро их решает. Чем качественнее сервер, например, такой как серверы HP , тем качественнее он исполняет свои обязанности.

Работу больших компаний, на которых установлено много электронного оборудования, уже трудно представить без объединения все этих устройств в одну сеть. Сервер на предприятии позволяет удаленного управлять офисной техникой и позволяет взаимодействовать ПК между собой.

Поломка сервера или сбой в его работе может закончиться катастрофой

На предприятиях серверы позволяют оптимизировать работу всех отделов. Но и в повседневной жизни мы часто сталкивается с работой серверов. В частности, операционисты в кассах и банках с помощью сервера распечатывают документы и осуществляют проплаты. Сервер поддерживает работу всех почтовиков, соцсетей и менеджеров общения.

Сервер обеспечивает выход в Сеть. Все сайты хранятся на серверах. Это обеспечивает виртуальный хостинг. Такую услугу предоставляют хостинговые компании.

Любое оборудование, в том числе и серверное, иногда начинает работать непредсказуемо. Абсолютно не важно - новое ли это оборудование, или же оно уже несколько лет работает с полной нагрузкой.

Случаев сбоя и некорректной работы возникает множество и диагностика проблемы зачастую превращается в увлекательную головоломку.

Ниже мы расскажем о некоторых интересных и нетривиальных случаях.

Обнаружение неполадок

Регистрация проблемы чаще всего происходит после обращения клиентов в службу технической поддержки посредством тикет-системы.

В случае обращения клиента, который арендует у нас выделенные серверы фиксированной конфигурации, мы проводим диагностику, чтобы выяснить, что проблема не носит программный характер.

Проблемы программного характера клиенты обычно решают собственными силами, тем не менее, мы в любом случае стараемся предложить помощь наших системных администраторов.

Если становится ясно, что проблема аппаратная (например, сервер не видит часть оперативной памяти), то на этот случай у нас всегда есть в резерве аналогичная серверная платформа.

В случае выявления аппаратной проблемы мы переносим диски со сбойного сервера на резервный и, после небольшой перенастройки сетевого оборудования, выполняется запуск сервера в работу. Таким образом данные не теряются, а время простоя не превышает 20 минут с момента обращения.

Примеры неполадок и способы их устранения

Сбой в работе сети на сервере

Существует вероятность, что после переноса дисков со сбойного сервера на резервный перестанет работать сеть на сервере. Это обычно происходит в случае использования операционных систем семейства Linux, например Debian или Ubuntu.

Дело в том, что при первоначальной установке операционной системы, MAC-адреса сетевых карт записываются в специальный файл, расположенный по адресу: /etc/udev/rules.d/70-persistent-net.rules.

При старте операционной системы этот файл сопоставляет имена интерфейсов MAC-адресам. При замене сервера на резервный, MAC-адреса сетевых интерфейсов уже не совпадают, что и приводит к неработоспособности сети на сервере.

Для решения проблемы необходимо удалить указанный файл и перезапустить сетевой сервис, либо перезагрузить сервер.

Операционная система, не найдя этого файла, автоматически сгенерирует аналогичный и сопоставит интерфейсы уже с новыми MAC-адресами сетевых карт.

Перенастройки IP-адресов после этого не требуется, сеть сразу начнет работать.

Плавающая проблема с зависаниями

Однажды к нам на диагностику поступил сервер с проблемой случайных зависаний в процессе работы. Проверили логи BIOS и IPMI - пусто, никаких ошибок. Поставили на стресс-тестирование, нагрузив все ядра процессора на 100%, с одновременным контролем температуры - завис намертво через 30 минут работы.

При этом процессор работал штатно, значения температуры не превышали стандартных при нагрузке, все кулеры были исправны. Стало ясно, что дело не в перегреве.

Далее следовало исключить вероятные сбои модулей оперативной памяти, поэтому поставили сервер на тест памяти с помощью достаточно популярного Memtest86+. Минут через 20 сервер ожидаемо завис, выдав ошибки по одному из модулей оперативной памяти.

Заменив модуль на новый, мы поставили сервер на тест повторно, однако нас ждало фиаско - сервер вновь завис, выдав ошибки уже по другому модулю ОЗУ. Заменили и его. Еще один тест - еще раз завис, вновь выдав ошибки по оперативной памяти. Внимательный осмотр слотов ОЗУ не выявил никаких дефектов.

Оставался один возможный виновник проблемы - центральный процессор. Дело в том, что контроллер оперативной памяти расположен именно внутри процессора и именно он мог давать сбой.

Сняв процессор, обнаружили катастрофу - один пин сокета был сломан в верхней части, обломанный кончик пина буквально прикипел к контактной площадке процессора. В итоге, когда на сервере не было нагрузки, все работало адекватно, но при увеличении температуры процессора контакт нарушался, тем самым прекращая нормальную работу контроллера оперативной памяти, что и вызывало зависания.

Окончательно проблема решилась заменой материнской платы, поскольку восстановить сломавшийся пин сокета нам, увы, не под силу, и это уже задача для сервисного центра.

Мнимое зависание сервера при установке ОС

Достаточно забавные случаи возникают, когда производители оборудования начинают менять архитектуру аппаратной части, отказываясь от поддержки старых технологий в пользу новых.

К нам обратился пользователь с жалобой на зависание сервера при попытке установки операционной системы Windows Server 2008 R2. После успешного запуска инсталлятора, сервер прекращал реагировать на мышь и клавиатуру в KVM-консоли. Для локализации проблемы подключили к серверу физическую мышь и клавиатуру - все то же самое, инсталлятор запускается и перестает реагировать на устройства ввода.

На тот момент этот сервер у нас был одним из первых на базе материнской платы X11SSL-f производства Supermicro. В настройках BIOS был один интересный пункт Windows 7 install, выставленный в Disable. Поскольку Windows 7, 2008 и 2008 R2 разворачиваются на одном и том же инсталляторе, выставили этот параметр в Enable и чудесным образом мышь и клавиатура наконец-то заработали. Но это было лишь только начало эпопеи с установкой операционной системы.

На моменте выбора диска для установки ни одного диска не отображалось, более того, выдавалась ошибка необходимости установки дополнительных драйверов. Операционная система устанавливалась с USB-флешки и быстрый поиск в интернете показал, что такой эффект возникает, если программа установки не может найти драйвера для контроллера USB 3.0.

Википедия сообщила, что проблема решается отключением в BIOS поддержки USB 3.0 (XHCI-контроллера). Когда мы открыли документацию к материнской плате, нас ожидал сюрприз - разработчики решили полностью отказаться от контроллера EHCI (Enhanced Host Controller Interface) в пользу XHCI (eXtensible Host Controller Interface). Иными словами, все порты USB на этой материнской плате являются портами USB 3.0. И если отключить контроллер XHCI, то мы этим самым отключим и устройства ввода, сделав невозможным работу с сервером и соответственно установку операционной системы.

Поскольку серверные платформы не были оборудованы приводами для чтения CD/DVD дисков, единственным решением проблемы стало интегрирование драйверов непосредственно в дистрибутив операционной системы. Только интегрировав драйвера контроллера USB 3.0 и пересобрав установочный образ, мы смогли установить Windows Server 2008 R2 на этот сервер, а этот случай вошел в нашу базу знаний, чтобы инженеры не тратили лишнее время на бесплодные попытки.

Еще забавнее бывают случаи, когда клиенты привозят нам оборудование на размещение, а оно ведет себя не так, как ожидается. Именно так и произошло с дисковой полкой линейки Dell PowerVault.

Устройство представляет собой систему хранения данных c двумя дисковыми контроллерами и сетевыми интерфейсами для работы по протоколу iSCSI. Помимо этих интерфейсов присутствует MGMT-порт для удаленного управления.

Среди наших услуг для размещенного оборудования как раз есть специальная услуга «Дополнительный порт 10 Мбит/с», которую заказывают в случае необходимости подключения средств удаленного управления сервером. Эти средства носят разные названия:

  • «iLO» у Hewlett-Packard;
  • «iDrac» у Dell;
  • IPMI у Supermicro.
Функционал у них приблизительно одинаков - мониторинг состояния сервера и доступ к удаленной консоли. Соответственно большая скорость канала им не требуется - 10 Мбит/с вполне достаточно для комфортной работы. Именно эта услуга и была заказана клиентом. Мы проложили соответствующую медную кроссировку, и настроили порт нашего сетевого оборудования.

Для ограничения скорости порт просто настраивается как 10BASE-T и включается в работу, имея максимальную скорость в 10 Мбит/с. После того, как все было готово - мы подключили MGMT-порт дисковой полки, но клиент почти сразу сообщил, что у него ничего не работает.

Проверив состояние порта коммутатора, мы обнаружили неприятную надпись «Physical link is down». Такая надпись говорит, что имеется проблем с физическим соединением между коммутатором и подключенным в него клиентским оборудованием.

Плохо обжатый коннектор, сломанный разъем, перебитые жилы в кабеле - вот небольшой перечень проблем, которые приводят именно к отсутствию линка. Разумеется, наши инженеры сразу взяли тестер витой пары и проверили соединение. Все жилы идеально прозванивались, оба конца кабеля были обжаты идеально. К тому же, включив в этот кабель тестовый ноутбук, мы получили как и положено соединение со скоростью 10 Мбит/с. Стало ясно, что проблема на стороне оборудования клиента.

Поскольку мы всегда стараемся помочь нашим клиентам в решении проблем, решили разобраться, что именно вызывает отсутствие линка. Внимательно изучили разъем порта MGMT - все в порядке.

Нашли на сайте производителя оригинальную инструкцию по эксплуатации, чтобы уточнить - возможно ли со стороны программного обеспечения «погасить» данный порт. Однако такой возможности не предусматривалось - порт в любом случае поднимался автоматически. Несмотря на то, что подобное оборудование должно всегда поддерживать Auto-MDI(X) - иными словами правильно определять какой кабель включен: обычный или кроссовер, мы эксперимента ради обжали кроссовер и включили в тот же порт коммутатора. Пробовали принудительно выставлять параметр дуплекса на порту коммутатора. Эффект был нулевой - линка не было и идеи уже заканчивались.

Тут кто-то из инженеров высказал абсолютно противоречащее здравому смыслу предположение, что оборудование не поддерживает 10BASE-T и будет работать только на 100BASE-TX или даже на 1000BASE-X. Обычно любой порт, даже на самом дешевом устройстве совместим с 10BASE-T и вначале предположение инженера отмели как “фантастику”, но от безысходности решили попробовать переключить порт в 100BASE-TX.

Нашему удивлению не было предела, линк мгновенно поднялся. Чем именно обусловлено отсутствие поддержки 10BASE-T на порту MGMT остается загадкой. Такой случай - очень большая редкость, но имеет место быть.

Клиент был удивлен не меньше нашего и очень благодарил за решение проблемы. Соответственно ему так и оставили порт в 100BASE-TX, ограничив скорость на порту непосредственно с помощью встроенного механизма ограничения скорости.

Отказ турбин охлаждения

Как-то раз к нам приехал клиент, попросил снять сервер и вынести его в сервисную зону. Инженеры все сделали и оставили его наедине с оборудованием. Прошел час, второй, третий - клиент все время запускал/останавливал сервер и мы поинтересовались, в чем же заключается проблема.

Оказывается, что у сервера производства Hewlett-Packard отказало две турбинки охлаждения из шести. Сервер при этом включается, выдает ошибку по охлаждению и сразу выключается. При этом на сервере располагается гипервизор с критичными сервисами. Для восстановления штатной работы сервисов требовалось выполнить срочную миграцию виртуальных машин на другую физическую ноду.

Решили клиенту помочь следующим образом. Обычно сервер понимает, что с вентилятором охлаждения все хорошо, просто считывая количество оборотов. При этом, разумеется, инженеры Hewlett-Packard сделали все, чтобы нельзя было заменить оригинальную турбинку аналогом - нестандартный коннектор, нестандартная распиновка.

Оригинал такой детали стоит около $100 и ее нельзя просто так пойти и купить - надо заказывать из-за рубежа. Благо в интернете обнаружили схему с оригинальной распиновкой и выяснили, что один из пинов как раз отвечает за считывание количества оборотов двигателя в секунду.

Дальнейшее было делом техники - взяли пару проводов для прототипирования (волей случая оказались под рукой - некоторые наши инженеры увлекаются Arduino) и просто соединили пины от соседних рабочих турбинок с коннекторами вышедших из строя. Сервер запустился и клиенту наконец-то удалось выполнить миграцию виртуальных машин и запустить сервисы в работу.

Разумеется, что все это было выполнено исключительно под ответственность клиента, тем не менее в итоге такой нестандартный ход позволил сократить простой до минимума.

А где же диски?

В некоторых случаях причина проблемы порой настолько нетривиальна, что на ее поиск уходит очень большое количество времени. Так и получилось, когда один из наших клиентов пожаловался на случайный отвал дисков и зависание сервера. Аппаратная платформа - Supermicro в корпусе 847 (форм-фактора 4U) с корзинами для подключения 36-ти дисков. В сервере было установлено три одинаковых RAID-контроллера Adaptec, к каждому подключено по 12 дисков. В момент возникновения проблемы, сервер переставал видеть случайное количество дисков и зависал. Сервер вывели из продакшн и приступили к диагностике.

Первое, что удалось выяснить - диски отваливались только на одном контроллере. При этом «выпавшие диски» исчезали из списка в родной утилите управления Adaptec и заново там появлялись только при полном отключении питания сервера и последующем подключении. Первое, что пришло на ум - программное обеспечение контроллера. На всех трех контроллерах стояли немного разные прошивки, поэтому было решено на всех контроллерах установить одну версию прошивки. Выполнили, погоняли сервер в режимах максимальной нагрузки - все работает как положено. Пометив проблему как решенную, сервер отдали клиенту обратно в продакшн.

Через две недели снова обращение с той же проблемой. Было решено заменить контроллер на аналогичный. Выполнили, прошили, подключили, поставили на тесты. Проблема осталась - через пару дней выпали все диски уже на новом контроллере и сервер благополучно завис.

Переустановили контроллер в другой слот, заменили бэкплейн и SATA-кабели от контроллера до бэкплейна. Неделя тестов и снова диски выпали - сервер вновь завис. Обращение в поддержку Adaptec результатов не принесло - они проверили все три контроллера и проблем не обнаружили. Заменили материнскую плату, пересобрав платформу чуть ли не с нуля. Все, что вызывало малейшие сомнения заменили на новое. И проблема вновь проявилась. Мистика да и только.

Проблему удалось решить случайно, когда стали проверять в отдельности каждый диск. При определенной нагрузке один из дисков начинал стучать головами и давал короткое замыкание на порт SATA, при этом какая-либо аварийная индикация отсутствовала. Контроллер при этом переставал видеть часть дисков и вновь начинал их опознавать только при переподключении по питанию. Вот так один единственный сбойный диск выводил из строя всю серверную платформу.

Заключение

Конечно, это лишь малая часть интересных ситуаций, которые были решены нашими инженерами. Некоторые проблемы «отловить» достаточно непросто, особенно когда в логах нет никаких намеков на произошедший сбой. Зато любые подобные ситуации стимулируют инженеров детально разбираться в устройстве серверного оборудования и находить самые разнообразные решения проблем.

Вот такие забавные случаи были в нашей практике.
А с какими сталкивались вы? Добро пожаловать в комментарии.

Грамотная клиент-серверная архитектура: как правильно проектировать и разрабатывать web API

Рассказывает Владимир, веб-разработчик Noveo

Большинству разработчиков сайтов, веб-сервисов и мобильных приложений рано или поздно приходится иметь дело с клиент-серверной архитектурой, а именно разрабатывать web API или интегрироваться с ним. Чтобы не изобретать каждый раз что-то новое, важно выработать относительно универсальный подход к проектированию web API, основываясь на опыте разработки подобных систем. Предлагаем вашему вниманию объединенный цикл статей, посвящённых этому вопросу.

Приближение первое: Действующие лица

В один прекрасный момент, в процессе создания очередного веб-сервиса, я решил собрать все свои знания и размышления на тему проектирования web API для обслуживания нужд клиентских приложений и оформить их в виде статьи или серии статей. Разумеется, мой опыт не претендует на абсолют, и конструктивная критика и дополнения более чем приветствуются.

Чтиво получилось больше философское, нежели техническое, но и для любителей технической части здесь будет над чем поразмыслить. Сомневаюсь, что скажу в этой статье что-то принципиально новое, то, о чем вы никогда не слышали, не читали и о чем не думали сами. Просто попытаюсь уложить все в единую систему, в первую очередь в своей собственной голове, а это уже дорогого стоит. Тем не менее, буду рад, если мои измышления будут вам полезны в вашей практике. Итак, поехали.

Клиент и сервер

Сервером в данном случае мы считаем абстрактную машину в сети, способную получить HTTP-запрос, обработать его и вернуть корректный ответ. В контексте данной статьи совершенно не важны его физическая суть и внутренняя архитектура, будь то студенческий ноутбук или огромный кластер из промышленных серверов, разбросанных по всему миру. Нам в той же мере совершенно неважно, что у него под капотом, кто встречает запрос у дверей, Apache или Nginx, какой неведомый зверь, PHP, Python или Ruby выполняет его обработку и формирует ответ, какое хранилище данных используется: Postgresql, MySQL или MongoDB. Главное, чтобы сервер отвечал главному правилу - услышать, понять и простить ответить.

Клиентом тоже может быть все, что угодно, что способно сформировать и отправить HTTP-запрос. До определенного момента в этой статье нам также не особо будут интересны цели, которые ставит перед собой клиент, отправляя этот запрос, как и то, что он будет делать с ответом. Клиентом может быть JavaScript-сценарий, работающий в браузере, мобильное приложение, злой (или не очень) демон, запущенный на сервере, или слишком поумневший холодильник (уже есть и такие).

По большей части мы будем говорить о способе общения между выше перечисленными двумя, таком способе, чтобы они друг друга понимали, и ни у одного не оставалось вопросов.

Философия REST

REST (Representational state transfer) изначально был задуман как простой и однозначный интерфейс для управления данными, предполагавший всего несколько базовых операций с непосредственным сетевым хранилищем (сервером): извлечение данных (GET), сохранение (POST), изменение (PUT/PATCH) и удаление (DELETE). Разумеется, этот перечень всегда сопровождался такими опциями, как обработка ошибок в запросе (корректно ли составлен запрос), разграничение доступа к данным (вдруг этого вам знать не следует) и валидация входящих данных (вдруг вы написали ерунду), в общем, всеми возможными проверками, которые сервер выполняет перед тем, как выполнить желание клиента .

Помимо этого REST имеет ряд архитектурных принципов, перечень которых можно найти в любой другой статье о REST. Пробежимся по ним кратко, чтобы они были под рукой, и не пришлось никуда уходить:

Независимость сервера от клиента - серверы и клиенты могут быть мгновенно заменены другими независимо друг от друга, так как интерфейс между ними не меняется. Сервер не хранит состояний клиента.
Уникальность адресов ресурсов - каждая единица данных (любой степени вложенности) имеет свой собственный уникальный URL, который, по сути, целиком является однозначным идентификатором ресурса.

Пример: GET /api/v1/users/25/name

Независимость формата хранения данных от формата их передачи - сервер может поддерживать несколько различных форматов для передачи одних и тех же данных (JSON, XML и т.д.), но хранит данные в своем внутреннем формате, независимо от поддерживаемых.

Присутствие в ответе всех необходимых метаданных - помимо самих данных сервер должен возвращать детали обработки запроса, например, сообщения об ошибках, различные свойства ресурса, необходимые для дальнейшей работы с ним, например, общее число записей в коллекции для правильного отображения постраничной навигации. Мы еще пройдемся по разновидностям ресурсов.

Чего нам не хватает

Классический REST подразумевает работу клиента с сервером как с плоским хранилищем данных, при этом ничего не говорится о связанности и взаимозависимости данных между собой. Все это по умолчанию целиком ложится на плечи клиентского приложения. Однако современные предметные области, для которых разрабатываются системы управления данными, будь то социальные сервисы или системы интернет-маркетинга, подразумевают сложную взаимосвязь между сущностями, хранящимися в базе данных. Поддержка этих связей, т.е. целостности данных, находится в зоне ответственности серверной стороны, в то время, как клиент является только интерфейсом для доступа к этим данным. Так чего же нам не хватает в REST?

Вызовы функций

Чтобы не менять данные и связи между ними вручную, мы просто вызываем у ресурса функцию и «скармливаем» ей в качестве аргумента необходимые данные. Эта операция не подходит под стандарты REST, для нее не существует особого глагола, что заставляет нас, разработчиков, выкручиваться кто во что горазд.

Самый простой пример – авторизация пользователя. Мы вызываем функцию login, передаем ей в качестве аргумента объект, содержащий учетные данные, и в ответ получаем ключ доступа. Что творится с данными на серверной стороне – нас не волнует.

Еще вариант – создание и разрыв связей между данными. Например, добавление пользователя в группу. Вызываем у сущности группа функцию addUser, в качестве параметра передаем объект пользователь , получаем результат.

А еще бывают операции, которые вообще не связаны напрямую с сохранением данных как таковых, например, рассылка уведомлений, подтверждение или отклонение каких-либо операций (завершение отчетного периода etc).

Множественные операции

Часто бывает так, и разработчики клиентов поймут, о чем я, что клиентскому приложению удобнее создавать/изменять/удалять/ сразу несколько однородных объектов одним запросом, и по каждому объекту возможен свой вердикт серверной стороны. Тут есть как минимум несколько вариантов: либо все изменения выполнены, либо они выполнены частично (для части объектов), либо произошла ошибка. Ну и стратегий тоже несколько: применять изменения только в случае успеха для всех, либо применять частично, либо откатываться в случае любой ошибки, а это уже тянет на полноценный механизм транзакций.

Для web API, стремящегося к идеалу, тоже хотелось бы как-то привести подобные операции в систему. Постараюсь сделать это в одном из продолжений.

Статистические запросы, агрегаторы, форматирование данных

Частенько бывает так, что на основе хранимых на сервере данных нам нужно получить статистическую выжимку или данные, отформатированные особым образом: например, для построения графика на стороне клиента. По сути это данные, генерируемые по требованию, в той или иной мере на лету, и доступные только для чтения, так что имеет смысл вынести их в отдельную категорию. Одной из отличительных особенностей статистических данных, на мой взгляд, является то, что они не имеют уникального ID.

Уверен, что это далеко не все, с чем можно столкнуться при разработке реальных приложений, и буду рад вашим дополнениям и коррективам.

Разновидности данных

Объекты

Ключевым типом данных в общении между клиентом и сервером выступает объект. По сути, объект – это перечень свойств и соответствующих им значений. Мы можем отправить объект на сервер в запросе и получить в результат запроса в виде объекта. При этом объект не обязательно будет реальной сущностью, хранящейся в базе данных, по крайней мере, в том виде, в котором он отправлен или получен. Например, учетные данные для авторизации передаются в виде объекта, но не являются самостоятельной сущностью. Даже хранимые в БД объекты склонны обрастать дополнительными свойствами внутрисистемного характера, например, датами создания и редактирования, различными системными метками и флагами. Свойства объектов могут быть как собственными скалярными значениями, так и содержать связанные объекты и коллекции объектов , которые не являются частью объекта. Часть свойств объектов может быть редактируемой, часть системной, доступной только для чтения, а часть может носить статистический характер и вычисляться на лету (например, количество лайков). Некоторые свойства объекта могут быть скрыты, в зависимости от прав пользователя.

Коллекции объектов

Говоря о коллекциях, мы подразумеваем разновидность серверного ресурса, позволяющую работать с перечнем однородных объектов, т.е. добавлять, удалять, изменять объекты и осуществлять выборку из них. Помимо этого коллекция теоретически может обладать собственными свойствами (например, максимальное число элементов на страницу) и функциями (тут я в замешательстве, но такое тоже было).

Скалярные значения

В чистом виде скалярные значения как отдельная сущность на моей памяти встречались крайне редко. Обычно они фигурировали как свойства объектов или коллекций, и в этом качестве они могут быть доступны как для чтения, так и для записи. Например, имя пользователя может быть получено и изменено в индивидуальном порядке GET /users/1/name . На практике эта возможность пригождается редко, но в случае необходимости хотелось бы, чтобы она была под рукой. Особенно это касается свойств коллекции, например числа записей (с фильтрацией или без нее): GET /news/count .

В одной из следующих статей я постараюсь классифицировать эти операции и предложить варианты возможных запросов и ответов, основываясь на том, с какими из них мне приходилось сталкиваться на практике.

Приближение второе: Правильный путь

В этом приближении я хотел бы отдельно поговорить о подходах к построению уникальных путей к ресурсам и методам вашего web API и о тех архитектурных особенностях приложения, которые влияют на внешний вид этого пути и его компоненты.

О чем стоит подумать, стоя на берегу

Версионность

Рано или поздно любая действующая система начинает эволюционировать: развиваться, усложняться, масштабироваться, усовремениваться. Для разработчиков REST API это чревато в первую очередь тем, что необходимо запускать новые версии API при работающих старых. Здесь я говорю больше не об архитектурных изменениях под капотом вашей системы, а о том, что изменяется сам формат данных и набор операций с ними. В любом случае версионность нужно предусмотреть как в изначальной организации исходного кода, так и в принципе построения URL. Что касается URL, здесь существует два наиболее популярных способа указания версии API, которой адресован запрос. Префиксация пути example-api.com/v1/ и разведение версий на уровне субдомена v1.example-api.com . Использовать можно любой из них, в зависимости от потребности и необходимости.

Автономность компонентов

Web API сложных систем, поддерживающих несколько пользовательских ролей, зачастую требует разделения на части, каждая из которых обслуживает свой спектр задач. По сути, каждая часть может быть самостоятельным приложением, работать на разных физических машинах и платформах. В контексте описания API нам совершенно не важно, как сервер обрабатывает запрос и какие силы и технологии в этом замешаны. Для клиента API – система инкапсулированная. Тем не менее разные части системы могут обладать совершенно разной функциональностью, например, административная и пользовательская часть. И методология работы с одними и теми же, казалось бы, ресурсами может существенно отличаться. Поэтому такие части необходимо разделять на уровне домена admin.v1.example-api.com или префикса пути example-api.com/v1/admin/ . Это требование не является обязательным, и многое зависит от сложности системы и её назначения.

Формат обмена данными

Самым удобным и функциональным, на мой взгляд, форматом обмена данными является JSON, но никто не запрещает использовать XML, YAML или любой другой формат, позволяющий хранить сериализованные объекты без потери типа данных. При желании можно сделать в API поддержку нескольких форматов ввода/вывода. Достаточно задействовать HTTP заголовок запроса для указания желаемого формата ответа Accept и Content-Type для указания формата переданных в запросе данных. Другим популярным способом является добавление расширения к URL ресурса, например, GET /users.xml , но такой способ кажется менее гибким и красивым, хотя бы потому, что утяжеляет URL и верен скорее для GET-запросов, нежели для всех возможных операций.

Локализация и многоязычность

На практике многоязычность API чаще всего сводится к переводу сервисных сообщений и сообщений об ошибках на требуемый язык для прямого отображения конечному пользователю. Многоязычный контент тоже имеет место быть, но сохранение и выдача контента на разных языках, на мой взгляд, должна разграничиваться более явно, например, если у вас одна и та же статья существует на разных языках, то по факту это две разных сущности, сгруппированные по признаку единства содержания. Для идентификации ожидаемого языка можно использовать разные способы. Самым простым можно считать стандартный HTTP-заголовок Accept-Language . Я встречал и другие способы, такие, как добавление GET-параметра language="en" , использование префикса пути example-api.com/en/ или даже на уровне доменного имени en.example-api.com . Мне кажется, что выбор способа указания локали зависит от конкретного приложения и задач, стоящих перед ним.

Внутренняя маршрутизация

Итак, мы добрались до корневого узла нашего API (или одного из его компонентов). Все дальнейшие маршруты будут проходить уже непосредственно внутри вашего серверного приложения, в соответствии с поддерживаемым им набором ресурсов.

Пути к коллекциям

Для указания пути к коллекции мы просто используем название соответствующей сущности, например, если это список пользователей, то путь будет таким /users . К коллекции как таковой применимы два метода: GET (получение лимитированного списка сущностей) и POST (создание нового элемента). В запросах на получение списков мы можем использовать множество дополнительных GET параметров, применяемых для постраничного вывода, сортировки, фильтрации, поиска etc, но они должны быть опциональными, т.е. эти параметры не должны передаваться как часть пути!

Элементы коллекции

Для обращения к конкретному элементу коллекции мы используем в маршруте его уникальный идентификатор /users/25 . Это и есть уникальный путь к нему. Для работы с объектом применимы методы GET (получение объекта), PUT/PATCH (изменение) и DELETE (удаление).

Уникальные объекты

Во множестве сервисов существуют уникальные для текущего пользователя объекты, например профиль текущего пользователя /profile , или персональные настройки /settings . Разумеется, с одной стороны, это элементы одной из коллекций, но они являются отправной точкой в использовании нашего Web API клиентским приложением, и к тому же позволяют намного более широкий спектр операций над данными. При этом коллекция, хранящая пользовательские настройки может быть вообще недоступна из соображений безопасности и конфиденциальности данных.

Свойства объектов и коллекций

Для того, чтобы добраться до любого из свойств объекта напрямую, достаточно добавить к пути до объекта имя свойства, например получить имя пользователя /users/25/name . К свойству применимы методы GET (получение значения) и PUT/PATCH (изменение значения). Метод DELETE не применим, т.к. свойство является структурной частью объекта, как формализованной единицы данных.

В предыдущей части мы говорили о том, что у коллекций, как и у объектов, могут быть собственные свойства. На моей памяти мне пригодилось только свойство count, но ваше приложение может быть более сложным и специфичным. Пути к свойствам коллекций строятся по тому же принципу, что и к свойствам их элементов: /users/count . Для свойств коллекций применим только метод GET (получение свойства), т.к. коллекция – это только интерфейс для доступа к списку.

Коллекции связанных объектов

Одной из разновидностей свойств объектов могут быть связанные объекты или коллекции связанных объектов. Такие сущности, как правило, не являются собственным свойством объекта, а лишь отсылками к его связям с другими сущностями. Например, перечень ролей, которые были присвоены пользователю /users/25/roles . По поводу работы с вложенными объектами и коллекциями мы подробно поговорим в одной из следующих частей, а на данном этапе нам достаточно того, что мы имеем возможность обращаться к ним напрямую, как к любому другому свойству объекта.

Функции объектов и коллекций

Для построения пути к интерфейсу вызова функции у коллекции или объекта мы используем тот же самый подход, что и для обращения к свойству. Например, для объекта /users/25/sendPasswordReminder или коллекции /users/disableUnconfirmed . Для вызовов функций мы в любом случае используем метод POST. Почему? Напомню, что в классическом REST не существует специального глагола для вызова функций, а потому нам придется использовать один из существующих. На мой взгляд, для этого больше всего подходит метод POST т.к. он позволяет передавать на сервер необходимые аргументы, не является идемпотентным (возвращающим один и тот же результат при многократном обращении) и наиболее абстрактен по семантике.

Надеюсь, что все более-менее уложилось в систему 🙂 В следующей части мы поговорим подробнее о запросах и ответах, их форматах, кодах статусов.

Приближение третье: Запросы и ответы

В предыдущих приближениях я рассказал о том, как пришла идея собрать и обобщить имеющийся опыт разработки web API. В первой части я постарался описать, с какими видами ресурсов и операций над ними мы имеем дело при проектировании web API. Во второй части были затронуты вопросы построения уникальных URL для обращения к этим ресурсам. А в этом приближении я попробую описать возможные варианты запросов и ответов.

Универсальный ответ

Мы уже проговаривали, что конкретный формат общения сервера с клиентом может быть любым на усмотрение разработчика. Для меня наиболее удобным и наглядным кажется формат JSON, хотя в реальном приложении может быть реализована поддержка нескольких форматов. Сейчас же сосредоточимся на структуре и необходимых атрибутах объекта ответа. Да, все данные, возвращаемые сервером, мы будем оборачивать в специальный контейнер - универсальный объект ответа , который будет содержать всю необходимую сервисную информацию для его дальнейшей обработки. Итак, что это за информация:

Success - маркер успешности выполнения запроса

Для того, чтобы при получении ответа от сервера сразу понять, увенчался ли запрос успехом, и передать его соответствующему обработчику, достаточно использовать маркер успешности «success». Самый простой ответ сервера, не содержащий никаких данных, будет выглядеть так:

POST /api/v1/articles/22/publish { "success": true }

Error - сведения об ошибке

В случае, если выполнение запроса завершилось неудачей - о причинах и разновидностях отрицательных ответов сервера поговорим чуть позже, - к ответу добавляется атрибут «error», содержащий в себе HTTP-код статуса и текст сообщения об ошибке. Прошу не путать с сообщениями об ошибках валидации данных для конкретных полей. Правильнее всего, на мой взгляд, возвращать код статуса и в заголовке ответа, но я встречал и другой подход - в заголовке всегда возвращать статус 200 (успех), а детали и возможные данные об ошибках передавать в теле ответа.

GET /api/v1/user { "success": false, "error": { "code" : 401, "message" : "Authorization failed" } }

Data - данные, возвращаемые сервером

Большинство ответов сервера призваны возвращать данные. В зависимости от типа запроса и его успеха ожидаемый набор данных будет разным, тем не менее атрибут«data» будет присутствовать в подавляющем большинстве ответов.

Пример возвращаемых данных в случае успеха. В данном случае ответ содержит запрашиваемый объект user.

GET /api/v1/user { "success": true, "data": { "id" : 125, "email" : "[email protected]", "name" : "John", "surname" : "Smith", } }

Пример возвращаемых данных в случае ошибки. В данном случае содержит имена полей и сообщения об ошибках валидации.

PUT /api/v1/user { "success": false, "error": { "code" : 422, "message" : "Validation failed" } "data": { "email" : "Email could not be blank.", } }

Pagination - сведения, необходимые для организации постраничной навигации

Помимо собственно данных, в ответах, возвращающих набор элементов коллекции , обязательно должна присутствовать информация о постраничной навигации (пагинации) по результатам запроса.

Минимальный набор значений для пагинации состоит из:

  • общего числа записей;
  • числа страниц;
  • номера текущей страницы;
  • числа записей на странице;
  • максимального числа записей на странице, поддерживаемого серверной стороной.

Некоторые разработчики web API также включают в пагинацию набор готовых ссылок на соседние страницы, а также первую, последнюю и текущую.

GET /api/v1/articles Response: { "success": true, "data": [ { "id" : 1, "title" : "Interesting thing", }, { "id" : 2, "title" : "Boring text", } ], "pagination": { "totalRecords" : 2, "totalPages" : 1, "currentPage" : 1, "perPage" : 20, "maxPerPage" : 100, } }

Работа над ошибками

Как уже упоминалось выше, не все запросы к web API завершаются успехом, но это тоже часть игры. Система информирования об ошибках является мощным инструментом, облегчающим работу клиента и направляющим клиентское приложение по правильному пути. Слово «ошибка» в этом контексте не совсем уместно. Здесь больше подойдёт слово исключение , так как на самом деле запрос успешно получен, проанализирован, и на него возвращается адекватный ответ, объясняющий, почему запрос не может быть выполнен.

Каковы же потенциальные причины получаемых исключений?

500 Internal server error - всё сломалось, но мы скоро починим

Это как раз тот случай, когда проблема произошла на стороне самого сервера, и клиентскому приложению остаётся только вздохнуть и уведомить пользователя о том, что сервер устал и прилёг отдохнуть. Например, утеряно соединение с базой данных или в коде завелся баг.

400 Bad request - а теперь у вас всё сломалось

Ответ прямо противоположный предыдущему. Возвращается в тех случаях, когда клиентское приложение отправляет запрос, который в принципе не может быть корректно обработан, не содержит обязательных параметров или имеет синтаксические ошибки. Обычно это лечится повторным прочтением документации к web API.

401 Unauthorized - незнакомец, назови себя

Для доступа к этому ресурсу требуется авторизация. Разумеется, наличие авторизации не гарантирует того, что ресурс станет доступным, но не авторизовавшись, вы точно этого не узнаете. Возникает, например, при попытке обратиться к закрытой части API или при истечении срока действия текущего токена.

403 Forbidden - вам сюда нельзя

Запрашиваемый ресурс существует, но у пользователя недостаточно прав на его просмотр или модификацию.

404 Not found - по этому адресу никто не живёт

Такой ответ возвращается, как правило, в трёх случаях: путь к ресурсу неверен (ошибочен), запрашиваемый ресурс был удалён и перестал существовать, права текущего пользователя не позволяют ему знать о существовании запрашиваемого ресурса. Например, пока просматривали список товаров, один из них внезапно вышел из моды и был удалён.

405 Method not allowed - нельзя такое делать

Эта разновидность исключения напрямую связана с использованным при запросе глаголом (GET, PUT, POST, DELETE), который, в свою очередь, свидетельствует о действии, которое мы пытаемся совершить с ресурсом. Если запрошенный ресурс не поддерживает указанное действие, сервер говорит об этом прямо.

422 Unprocessable entity - исправьте и пришлите снова

Одно из самых полезных исключений. Возвращается каждый раз, когда в данных запроса существуют логические ошибки. Под данными запроса мы подразумеваем либо набор параметров и соответствующих им значений, переданных методом GET, либо поля объекта, передаваемого в теле запроса методами POST, PUT и DELETE. Если данные не прошли валидацию, сервер в секции «data» возвращает отчет о том, какие именно параметры невалидны и почему.

Протокол HTTP поддерживает намного большее число различных статус-кодов на все случаи жизни, но на практике они используются редко и в контексте web API не несут практической пользы. На моей памяти мне не приходилось выходить за пределы вышеперечисленного списка исключений.

Запросы

Получение элементов коллекции

Одним из наиболее частотных запросов является запрос на получение элементов коллекции. Информационные ленты, списки товаров, различные информационные и статистические таблицы и многое другое клиентское приложение отображает посредством обращения к коллекционным ресурсам. Для осуществления этого запроса мы обращаемся к коллекции, используя метод GET и передавая в строке запроса дополнительные параметры. Как мы уже обозначили выше, в качестве ответа мы ожидаем получить массив однородных элементов коллекции и информацию, необходимую для пагинации - подгрузки продолжения списка или же конкретной его страницы. Содержимое выборки может быть особым способом ограничено и отсортировано с помощью передачи дополнительных параметров. О них и пойдёт речь далее.

Постраничная навигация

page - параметр указывает на то, какая страница должна быть отображена. Если этот параметр не передан, то отображается первая страница. Из первого же успешного ответа сервера будет ясно, сколько страниц имеет коллекция при текущих параметрах фильтрации. Если значение превышает максимальное число страниц, то разумнее всего вернуть ошибку 404 Not found .

GET /api/v1/news?page=1

perPage - указывает на желаемое число элементов на странице. Как правило, API имеет собственное значение по умолчанию, которое возвращает в качестве поля perPage в секции pagination, но в ряде случаев позволяет увеличивать это значение до разумных пределов, предоставив максимальное значение maxPerPage:

GET /api/v1/news?perPage=100

Сортировка результатов

Зачастую результаты выборки требуется упорядочить по возрастанию или убыванию значений определенных полей, которые поддерживают сравнительную (для числовых полей) или алфавитную (для строковых полей) сортировку. Например, нам нужно упорядочить список пользователей по имени или товары по цене. Помимо этого мы можем задать направление сортировки от A до Я или в обратном направлении, причём разное для разных полей.

sortBy - существует несколько подходов к передаче данных о сложной сортировке в GET параметрах. Здесь необходимо четко указать порядок сортировки и направление.

В некоторых API это предлагается сделать в виде строки:

GET /api/v1/products?sortBy=name.desc,price.asc

В других вариантах предлагается использовать массив:

GET /api/v1/products? sortBy=name& sortBy=desc& sortBy=price& sortBy=asc

В целом оба варианта равносильны, так как передают одни и те же инструкции. На мой взгляд, вариант с массивом более универсален, но тут, как говорится, на вкус и цвет…

Простая фильтрация по значению

Для того, чтобы отфильтровать выборку по значению какого либо поля, в большинстве случаев достаточно передать в качестве фильтрующего параметра имя поля и требуемое значение. Например, мы хотим отфильтровать статьи по ID автора:

GET /api/v1/articles?authorId=25

Усложнённые варианты фильтрации

Многие интерфейсы требуют более сложной системы фильтрации и поиска. Перечислю основные и наиболее часто встречаемые варианты фильтрации.

Фильтрация по верхней и нижней границе с использованием операторов сравнения from (больше или равно), higher (больше), to (меньше или равно), lower (меньше). Применяется к полям, значения которых поддаются ранжированию.

GET /api/v1/products?price=500&price=1000

Фильтрация по нескольким возможным значениям из списка. Применяется к полям, набор возможных значений которых ограничен, например, фильтр по нескольким статусам:

GET /api/v1/products?status=1&status=2

Фильтрация по частичному совпадению строки. Применяется к полям, содержащим текстовые данные или данные, которые могут быть приравнены к текстовым, например, числовые артикулы товаров, номера телефонов и т. д.

GET /api/v1/users?name=John GET /api/v1/products?code=123

Именованные фильтры

В некоторых случаях, когда определенные наборы фильтрационных параметров часто употребимы и подразумеваются системой как нечто целостное, особенно если затрагивают внутреннюю, зачастую сложную механику формирования выборки, целесообразно сгруппировать их в так называемые именованные фильтры. Достаточно передать в запросе имя фильтра, и система построит выборку автоматически.

GET /api/v1/products?filters=recommended

Именованные фильтры могут также иметь свои параметры.

GET /api/v1/products?filters=kidds

В этом подразделе я постарался рассказать о наиболее популярных вариантах и способах получения требуемой выборки. Скорее всего, в вашей практике наберется намного больше примеров и нюансов касаемо этой темы. Если у вас есть, чем дополнить мой материал, я буду только рад. Тем временем пост уже разросся до солидных масштабов, так что другие виды запросов мы разберём в следующем приближении.

Привет, Хабр! Я Андрей Фролов, ведущий программист, работаю в Mail.Ru над Next-Gen MMORPG Skyforge. Вы могли читать мою статью про архитектуру баз данных в онлайн-играх. Сегодня я буду раскрывать секреты, касающиеся устройства сервера Skyforge. Постараюсь рассказать максимально подробно, с примерами, а также объясню, почему было принято то или иное архитектурное решение. По нашему серверу без преувеличения можно написать целую книгу, поэтому для того, чтобы уложиться в статью, мне придется пройтись только по основным моментам.

Обзор

  • Сервер - это почти два миллиона строк кода на Java. Для соединения с сервером и отображения красивой картинки используется клиент, написанный на C++.
  • Свой вклад в серверный код внесли полсотни программистов. Код писался в течение многих лет лучшими специалистами российского «православного» геймдева. В нем собраны все самые удачные идеи со всего мира.
  • На текущий момент у нас написано около 5200 автоматических тестов, налажен continuous integration и нагрузочное тестирование с помощью ботов.
  • Сервер умеет запускаться и работать на десятках и сотнях серверов, поддерживать игру сотен тысяч человек одновременно. Мы решили отказаться от традиционной для MMO техники шардирования и запустить всех игроков в один большой мир.

Первое и главное правило разработки сервера: клиент в руках врага. Клиент защищен, но чисто теоретически и его могут хакнуть, могут расшифровать клиент-серверный протокол. Взлом клиента может привести к обходу игровых правил, читам, ботоводству и т.п. Такие вещи разрушают игру для всех. Чтобы этого не произошло, мы должны эмулировать весь игровой мир со всеми игровыми правилами у себя на сервере, а клиент использовать только для отображения красивой картинки. Кроме того, клиент надо проверять на взлом, отслеживая подозрительное поведение и т.д.

Сервисная архитектура

Одна из основных особенностей разработки состоит в том, что мы не знаем, сколько у нас будет игроков. Может быть, всего один - сам разработчик, а может, 100000 одновременно. Поэтому сервер должен уметь запускаться в маленькой конфигурации, на ноутбуке, и растягиваться при необходимости на десятки и сотни мощных серверов.

Вторая особенность состоит в том, что при старте разработки мы понятия не имели, о чем будет наша игра, какие в ней будут особенности, сервисы и т.п. Структура сервера должна быть максимально гибкой в плане добавления новых сервисов и фич.

Третья большая проблема - это многопоточность. Как известно, лучший способ сладить с многопоточностью - это избежать ее. Deadlock, livelock, lock contention и другие милые сердцу программиста проблемы можно обойти, если архитектура сервера будет избавлять вас от необходимости синхронизировать потоки вручную. В идеале программист вообще должен писать простой однопоточный код и не задумываться о такого рода вещах.

Отсюда родилась наша универсальная структура сервера, которая используется в Skyforge:

  • Существует пул физических серверов, на которых будет запускаться игра. Этот набор серверов и наше серверное приложение, которое на них запущено, называется Realm.
  • На каждом сервере запускается серверное приложение (JVM), называемое ролью. Роли бывают разные: аккаунт-сервер, игровая механика, чат и т.д. Каждая роль берет на себя большой кусок функционала. Некоторые роли существуют в единственном числе, некоторые запускаются в нескольких экземплярах.
  • Роль состоит из набора сервисов. Сервис - это обычный поток (thread), который занимается своей, специфичной для него задачей. Примером сервиса может служить сервис авторизации, сервис резервирования имен, балансировщик нагрузки и т.п. Каждый сервис ничего не знает о физическом расположении других сервисов. Они могут быть рядом, а могут быть на другой физической машине. Сервисы взаимодействуют через систему сообщений, которая скрывает от них такого рода подробности.
  • Каждый сервис состоит из набора модулей. Модуль - это «кусок функциональности», у которого есть один метод tick(). Примером модуля может быть модуль статистики, модуль исполнения транзакций, модуль синхронизации времени. Вся работа сервиса заключается в том, чтобы в бесконечном цикле поочередно вызывать метод tick() у своих модулей. Один такой цикл называется «кадр сервера». Мы считаем показатель хорошим, если кадр сервера колеблется в пределах от 3 до 20 мс.
  • Вся эта структура описывается в XML-файлах. Системе запуска надо просто «скормить» название роли. Она найдет соответствующий файл, запустит все нужные сервисы и отдаст им списки модулей. Сами модули создадутся с помощью java reflection.

Таким образом, мы можем запустить роль «локальный сервер», где будет все необходимое, а можем разбить сервер на несколько десятков ролей - аккаунт-сервер, итем-сервер, игровая механика и т.д. - и запускать его на десятках разных физических серверов. Структура оказалась чрезвычайно гибкой и удобной, советую серьезно к ней присмотреться.

Основные сервисы

Есть некоторый набор сервисов, который несет основную игровую нагрузку. Каждый из серверов должен уметь масштабироваться. В идеале - до бесконечности. К сожалению, писать серверы так, чтобы они масштабировались, это непростая задача. Поэтому мы начали с того, что сделали основные сервисы масштабируемыми, а всякую дополнительную мелочь, которая не несет основной нагрузки, оставили на потом. Если у нас будет очень много пользователей, то и их нам придется улучшать для обеспечения возможности масштабирования.
  • Аккаунт-сервис. Отвечает за авторизацию и подключение новых клиентов.
  • Сервер игровой механики. Тут происходит, собственно, сама игра. После прохождения авторизации клиент подключается сюда и тут играет. С другими сервисами клиент напрямую не взаимодействует. Таких сервисов можно и нужно запускать несколько десятков, а то и сотен. Именно эти сервисы несут основную нагрузку.
  • Сервисы баз данных. Эти сервисы выполняют операции над данными игровых персонажей, их предметами, деньгами, прогрессом развития. Их обычно запускается несколько штук. Подробнее об архитектуре баз данных можно прочитать в моем прошлом докладе. (habrahabr.ru/company/mailru/blog/182088)
  • Чат. Занимается роутингом сообщений чата между пользователями.
  • Все остальные сервисы. Их несколько десятков, и они обычно не создают сильной нагрузки, поэтому не требуют обособленных серверов.

Сеть

Под словом «сеть» я подразумеваю систему доставки сообщений от одного сервиса к другому или от одного объекта к другому. Исторически так сложилось, что у нас существует сразу две такие системы. Одна основана на сообщениях. Вторая система основана на удаленном вызове процедур (RPC). В Skyforge система сообщений применяется внутри сервиса игровой механики, чтобы послать какое-то сообщение от аватара к мобу, а также для общения клиента и сервера. RPC используется для общения между сервисами.

Сообщения
Все объекты, которые хотят посылать или принимать сообщения, называются абонентами. Каждый абонент регистрируется в общей директории и получает уникальный идентификатор - адрес. Любой, кто хочет послать сообщение какому-либо абоненту, должен указать адреса «откуда» и «куда». Сетевой движок знает, где находится абонент, и доставляет ему сообщение. Сообщение - это Java-объект, у которого есть метод run(). При отправке этот объект сериализуется, прилетает к целевому абоненту, там десериализуется, а затем вызывается метод run() над целевым абонентом.

Такой подход очень удобен тем, что позволяет реализовывать простые команды типа «нанести удар», «выдать анлок», «запустить фаербол». Вся эта логика оказывается внешней по отношению к объекту, над которым выполняется действие. Большой минус этого подхода в том, что если логика команды требует выполнения какого-либо кода на нескольких абонентах, то нам потребуется сделать несколько сообщений, которые будут посылать друг друга по цепочке. Логика оказывается фрагментирована на несколько классов, и цепочки сообщений часто довольно долго и сложно распутывать.

RPC
Удаленный вызов процедур или RPC появился, чтобы решить проблему цепочек сообщений.
Основная идея заключается в использовании кооперативной многозадачности (Coroutine, Fibers). Тому, кто не знаком с это концепцией, для понимания темы советую заглянуть в «Википедию». en.wikipedia.org/wiki/Coroutine .
Сервис, который хочет, чтобы его могли вызывать через удаленный вызов процедур, должен реализовывать специальный интерфейс и зарегистрировать в специальной директории. Тогда любой желающий может попросить директорию дать ему интерфейс этого сервиса, и директория вернет специальный враппер над сервисом. Вызывать сервисы по RPC можно только внутри файбера (coroutin), т.е. специального контекста исполнения, который можно прерывать и возобновлять в точках разрыва. При вызове методов враппера он будет посылать RPC вызовы на удаленный сервис, прерывать текущий файбер в ожидании ответа и возвращать результат, когда удаленный сервер ответит.

Таким образом, мы концентрируем логику в одном методе, а не размазываем ее по сотням сообщений. Код сильно упрощается, его можно писать в терминах вызова функций каких-то объектов, а не в терминах посылки сообщений. Но возникают проблемы с неким подобием многопоточности, т.к. после того, как мы вернулись из удаленного вызова, окружение уже могло измениться. В целом такой подход очень удобен, когда у сервиса есть ограниченный интерфейс из десятка методов. Когда методов становится много, интерфейс лучше разбивать на несколько.

Сериализация
Чтобы у нас работала система посылки сообщений и удаленный вызов процедур, нам нужен клиент-серверный протокол и способ сериализации/десериализации объектов. Напомню, что у нас есть необходимость пересылать команды и данные с клиента на сервер, т.е. из C++ в Java и обратно. Для этого мы по Java-классам генерируем их копии в C++, а также генерируем методы для сериализации и десериализации объектов в байтовый поток. Код для сериализации встраивается прямо внутрь классов и обращается к полям класса напрямую. Таким образом, сервер не тратит процессорное время на обход классов с помощью reflection. Все это мы генерируем с помощью самописного плагина для IntelliJ IDEA. Внутрисерверный протокол для общения между сервисами полностью аналогичен клиент-серверному протоколу.

При сериализации какого-либо класса в байтовый поток, сначала пишется id класса, потом данные полей этого класса. На другой стороне считывается id, выбирается соответствующий класс и у него вызывается специальный конструктор, который восстанавливает класс из байтового потока.

Игровая механика

Основной сервис, который был бы вам интересен, это сервис игровой механики. Именно там выполняется весь код, непосредственно связанный с игрой, именно там моделируется весь игровой мир, летают фаерболы и «грабятся корованы».
Карты и балансировка нагрузки
На серверах игровой механики создаются карты, на которых, собственно, находятся игроки, мобы и происходит все веселье. У каждой карты есть лимит на количество игроков, которые могут на ней находиться. Например, лимит может быть равен единице для персональных приключений, 10–30 для групповых активностей и 250 для больших карт. Что происходит, если на карту захочет попасть еще один игрок, когда лимит исчерпан? Тогда будет создана еще одна копия той же самой карты. Игроки с этих карт не будут видеть друг друга, не будут друг другу мешать. Т.е. в каком-нибудь игровом городе могут быть тысячи человек, но там не будет тесно. Такой способ организации игроков называется «каналы».

За создание карт отвечает центральный сервис «балансировщик карт», который распределяет карты по сервисам игровой механики в зависимости от популяции, нагрузки и других магических причин, стараясь поддерживать равномерное распределение нагрузки и нормальную плотность играющих, чтобы им не было скучно.

На каждом сервере игровой механики загружена информация о карте проходимостей, коллизиях и других подобных вещах. Когда игрок или моб пытается двинуться в какую-либо точку, то сервер просчитывает, может ли игрок туда попасть, не пытается ли он считерить и пройти сквозь стену. Когда игрок пытается кинуть во врага фаербол, то по этой же информации сервер рассчитывает, видит ли игрок врага и нет ли на его пути препятствий.

Аватары и мобы
Аватар - это персонаж, которым управляет игрок, моб - это монстр, которого игрок убивает. Это весьма разные, но часто очень похожие сущности. И моб, и аватар умеют ходить по карте, у них есть здоровье, они могут использовать заклинания и т.п. Только аватаром управляет игрок, а у моба есть свой мозг. Кроме того, на картах есть множество всяких сундуков, растений и других интерактивных сущностей. Очень часто нужно делать некую функциональность и цеплять ее к разным сущностям. Для этих целей мы используем компонентный подход, собирая игровую сущность из набора функциональностей. Поясню на примере. Допустим, у игрока и моба есть показатель здоровья. В таком случае мы оформляем элемент «здоровье» как отдельный Java-класс, в котором описываем, как здоровье себя ведет: как оно может уменьшаться, как восстанавливаться, какие есть таймеры и т.п. Потом мы просто складываем все функциональности в специальную HashMap внутри сущности и берем ее оттуда по необходимости. Таких компонент у нас существуют сотни, на них собрана половина игровой механики.

Так как серверное приложение очень сложное, неизбежно возникновение ошибок. Нужно сделать так, чтобы возникновение ошибки, даже необработанного NullPointerException, не приводило к падению сервера. Можно ошибку просто залогировать и пойти дальше, но если ошибка возникнет посреди какого-то длинного действия над аватаром, то аватар может оказаться в сломанном и неконсистентном состоянии. Тут нам на помощь приходит концепция под названием «локаль». Локаль - это контекст, внутри которого объекты могут ссылаться друг на друга. Объекты из одной локали не могут ссылаться на объекты из другой. Если из локали вылетает необработанное исключение, то локаль удаляется целиком. Аватары, мобы и другие сущности являются локалями, удаляются целиком и не могут держать ссылок на других аватаров и мобов. Поэтому все взаимодействие между аватарами и мобами идет через систему сообщений, хотя они находятся вместе на одной машине и в теории могли бы держать друг на друга прямую ссылку.

Репликация
Моделировать игровой мир нужно не только на сервере, но и частично на клиенте. Например, клиенту нужно видеть других игроков и мобов, которые находятся рядом с ним. Для этого используется механизм клиент-серверной репликации, когда с сервера клиентам рассылаются обновления окружающего игрового мира. Делается это с помощью генератора кода, который встраивает отсылку обновлений в сеттеры серверных Java-объектов. Вокруг игрока создается круг определенного радиуса, и если кто-то, например другой аватар, попадает в этот круг, он начинает реплицироваться на клиент. С репликацией есть фундаментальная проблема. Если в одном месте столпится N аватаров, то на каждого из них нужно будет посылать N реплик. Таким образом возникает квадратичная зависимость, что ограничивает количество аватаров, которые могут собраться в одном месте. Именно из-за этой фундаментальной квадратичности клиенты всех ММО тормозят в столицах. Мы избегаем этой проблемы, ограничивая количество игроков на карте и распределяя их по каналам.
Ресурсная система
В игре существуют сотни и тысячи заклинаний, предметов, квестов и других подобных сущностей. Как вы, наверное, догадываетесь, программисты не пишут все сотни квестов, это делают геймдизайнеры. Программист разрабатывает один Java-класс квеста, а описания всех квестов с их логикой, задачами и текстами содержатся в XML-файлах, называемых ресурсами. При старте сервера мы загружаем эти ресурсы и на их основе собираем Java-классы с описанием мира. Этими классами уже может пользоваться сервер. Примерно такая же система существует и на стороне клиента, только там ресурсы не грузятся из XML-файлов, а просто загружается заранее созданный «кусок памяти», содержащий все нужные объекты и ссылки между ними. Ресурсных файлов у нас существует несколько сотен тысяч, но их загрузка на сервере занимает около двух минут. На клиенте же все грузится за секунды. Система очень навороченная, поддерживает такие фичи, как прототипы и наследование, вложенные описатели и т.п. Поверх ресурсной системы у нас созданы специализированные программы для редактирования карт и остальных игровых сущностей.

Сервер в действии

Давайте теперь на примерах рассмотрим несколько сценариев того, как работает вся эта система в действии.
Убить собачку
Классический тест, который мы всегда проводим, если сильно изменили инфраструктуру и хотим проверить, что все работает, называется «Убить собачку». Нужно зайти клиентом на сервер и убить там какого-либо моба. Этот тест покрывает практически все основные моменты сервера и служит прекрасным примером для того, чтобы сложить все вышесказанное вместе. Давайте по пунктам разберем, что и как происходит при убиении несчастной собачки. Конечно, некоторые шаги упрощены, но это не критично для понимания.
  • Клиент посылает на аккаунт-сервер сообщение: «Хочу войти в игру».
  • Аккаунт-сервер запрашивает базу данных, проводит авторизацию и запрашивает у балансировщика карту, на которой игрок был в последний раз.
  • Балансировщик выбирает карту из уже загруженных или создает новую на наименее загруженном сервере игровой механики.
  • Клиент подключается к той механике, где для него была создана карта. Пока он подключается, для него загружается его аватар.
  • Сервер начинает реплицировать все объекты вокруг аватара на клиент. Клиент рисует шикарную картинку и посылает на сервер команды, которые посылает игрок.
  • Игрок начинает бегать по карте, а сервер перемещает его по миру и реплицирует изменения окружающей действительности. Игрок находит какого-либо моба и нажимает кнопку «ударить».
  • Команда «удар» прилетает на сервер, на сервере выполняется проверка, что удар возможен, и мобу отправляется сообщение о нанесении повреждений.
  • Команда «нанести повреждения» отрабатывается на мобе, просчитывает все резисты и другие подобные вещи, потом берет функциональность «здоровье» и списывает какое-то количество.
  • Клиенту посылается ответ с подтверждением нанесения урона, клиент рисует удар.
Масштабирование
Давайте зайдем с другой стороны и посмотрим, как сервер ведет себя под нагрузкой.
  • 0 клиентов. Если на сервере никого нет, его можно запускать одним приложением с минимальными настройками и без карт. На сервере нет никакой активности, и большую часть времени он простаивает.
  • 1 клиент. Для одного клиента приходится создавать карту, мобов, серверные объекты, которые начинают потреблять память и процессорное время для своей жизни.
  • 500 клиентов. 500 клиентов обычно уже достаточно много, чтобы процессорного времени одной персоналки не хватало для работы сервера. Приходится запускать realm на нескольких машинах или на более мощных серверах.
  • 10000 клиентов. 10000 клиентов требуют уже нескольких серверов. Так как большая часть нагрузки приходится на игровые механики, нужно запускать realm с дополнительными сервисами игровой механики.
  • 100000 клиентов. При 100000 одновременных игроков больше половины серверов заняты игровой механикой.
  • Клиентов больше, чем железа. Если вдруг игроков станет еще больше, а железо у нас вдруг кончится, то придется ограничивать вход людей в игру, пока подвозят новые серверы. Для этого существует очередь на вход, которая заставляет игроков ждать, когда сервер будет готов их принять. Эта очередь гарантирует, что одновременно один realm не может содержать игроков больше, чем мы готовы принять. В очередь игроков могут начать ставить и в том случае, если из-за бага или еще по каким-либо причинам сервер вдруг стал работать медленнее определенного порога. Лучше сделать приемлемый сервис для ограниченного числа клиентов, чем упасть для всех.

Заключение

Надеюсь, наш опыт поможет вам понять, как работают современные игровые серверы, и создать свой, если до этого дойдет дело.
Чтобы лучше понять другие аспекты разработки игр, я бы порекомендовал вам почитать статьи моих коллег.